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Abstract
In planar cellular systems mn denotes the average sidedness of a cell
neighbouring an n-sided cell. Aboav’s empirical law states that nmn is linear
in n. A downward curvature is nevertheless observed in the numerical nmn

data of the random Voronoi froth. The exact large-n expansion of mn obtained
in the present work, namely, mn = 4 + 3(π/n)

1
2 + · · · , explains this curvature.

Its inverse square root dependence on n sets a new theoretical paradigm.
Similar curved behaviour may be expected, and must indeed be looked for,
in experimental data of sufficiently high resolution. We argue that it occurs,
in particular, in diffusion-limited colloidal aggregation on the basis of recent
simulation data due to Fernández-Toledano et al (2005 Phys. Rev. E 71 041401)
and earlier experimental results by Earnshaw and Robinson (1994 Phys. Rev.
Lett. 72 3682).

PACS numbers: 02.50.−r, 45.70.Qj, 87.18.−h

1. Introduction

1.1. General

In nature, planar cellular systems come in a wide variety. They include biological tissues
[1–3], polycrystals [4], cells formed by particles trapped at a water/air interface [5], cells
in surface-tension driven Bénard convection [6], in two-dimensional soap froths [7] and in
magnetic liquid froths [8]. In other systems cellular structure may appear when the data are
subjected to the Voronoi construction [9]. Examples of these are hard discs on an air table
[10], a binary liquid during late stage coarsening [11], two-dimensional colloidal aggregation
[12–14], nanostructured cellular layers [15] and studies of two-dimensional melting [16].

Two empirical rules play a prominent role in studies of planar cellular systems: Lewis’
law and Aboav’s law. Both are statements about the statistics of a cell’s most conspicuous

1 Laboratoire associé au Centre National de la Recherche Scientifique—UMR 8627.
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properties, namely, its area and its number of sides. Lewis’ law [1] says that the average area
An of an n-sided cell increases with n as

An = a0

λ
(n − n0), (1.1)

where a0 and n0 are constants and λ is the areal cell density. In the present work we are
interested in the second one of these laws, formulated by Aboav [4], who noted that many-
sided cells tend to have few-sided neighbours and vice versa. He expressed this correlation
in terms of the average mn of the number of sides of a cell that neighbours an n-sided cell.
Aboav’s law, also called the Aboav–Weaire [17] law, asserts that

mn = 6 − a +
b

n
, (1.2)

where a and b are numerical constants. This law, which expresses an intuitively plausible
trend with n, is in widespread use [2, 3, 5–8, 10–12, 15, 16] in the analysis of experimental
data on cellular structures. One usually plots nmn = (6 − a)n + b as a function of n and often
refers to either this relationship or equation (1.2) as the linear law.

The surprising fact is that for many of these cellular systems, in spite of all their diversity,
Aboav’s linear law appears to hold with good accuracy in most of the experimentally accessible
range, which runs from n = 3 to n typically between 9 and 12. The experimental values of
the Aboav parameters, listed e.g. in [18], are typically in the range 0.7 � a � 1.5 and
5.7 � b � 8.5.2 Attempts to explain the linearity with n and the numerical values of a
and b from first principles, i.e., on the basis of a microscopic geometrical model, have been
unsuccessful. The various derivations of (1.2) that one does find in the literature all involve
approximations (usually of the mean-field kind, see e.g. [19]) or hypotheses whose general
validity is subject to caution (we consider the ‘maximum entropy method’ [20] to be in this
class). The dominant view today is probably that (1.2) is not exact, but merely a good
approximation to some unknown ‘true’ curve, which need not be the same for all cellular
systems.

It has been realized, in particular by Le Caër and Delannay [21], that knowledge about the
large-n behaviour of mn will constrain the law for mn, for example by establishing the regime
of validity of its linearity or by putting limits on the numerical values of a and b. The question
of the large-n behaviour of mn is however a difficult one and has received little attention since.
The ‘derivations’ referred to above generally lead to (1.2) without providing any restrictions
on its range of validity. In the present work we return to the large-n behaviour. We analyse it
within the context of the random Voronoi froth and consider the implications of our conclusion
for the interpretation of simulations and experiments.

1.2. The random Voronoi froth (RVF)

We consider the ‘random Voronoi froth’ (RVF), in the mathematical literature rather called
the ‘Poisson–Voronoi tessellation’. It is obtained by constructing the Voronoi cells [9] of a
planar set of randomly and uniformly distributed point centres, for convenience often called
‘seeds’ (but without the implication that they are material). The statistical properties of the
RVF have been studied more than those of any other microscopic model of cellular structure.
Reference [9] compiles a large body of analytic results and numerical tables. For the role and
place of the RVF amidst other models of cellular systems one may consult, e.g., Rivier [22]
or Schliecker [23].

2 Values outside this range, including negative values of a, may nevertheless occur, in particular in artificial computer-
generated structures. See, e.g., [34].
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Figure 1. The cells neighbouring an n-sided cell have together a total average of nmn sides. Open
circles: simulation values of nmn according to Boots and Murdoch [24]. Dots: simulation values of
nmn according to Brakke [27]. Dashed line: Aboav’s linear law nmn = (6−a)n+b with a = 0.75
and b = 5.76. Open squares: the second derivative (nmn)

′′ ≡ (n− 1)mn−1 − 2nmn + (n + 1)mn+1,
constructed from Brakke’s [27] mn data and multiplied by −250 in order to be visible on the scale
of the figure. Error bars are shown for the dot and open square data; where absent, they are smaller
than the data point symbols.

Analytically, a first-principle derivation of an exact expression for mn in the RVF (or, for
that matter, in any other geometrical model) is still lacking. The reason is that the calculation
of this quantity is in the notoriously difficult class of many-body problems. Numerically,
however, the mn values of the RVF are known with considerable precision [24–27]. The best
data come from Monte Carlo simulations by Brakke [27], whose results for mn have a four digit
accuracy in the range 4 � n � 9. In figure 1 we show these data as well as those by Boots and
Murdoch [24], represented in the usual way in an nmn versus n plot. The dashed straight line
is Aboav’s law (1.2) with a = 0.75 and b = 5.76. Although this law provides what appears
as a very good approximation, the data points nevertheless exhibit an extremely small but
distinctive downward curvature and the narrowness of their error bars rules out Aboav’s linear
fit. We have computed the second derivative (nmn)

′′ ≡ (n − 1)mn−1 − 2nmn + (n + 1)mn+1

from Brakke’s [27] numerical data and plotted it in figure 1. The ratio −(nmn)
′′/(nmn), which

may be taken as a measure of the curvature, is of the order of only 1/250 = 0.004. Hence a
successful theory of the RVF should explain the existence as well as the sign and the smallness
of the curvature. So far, in order to accommodate this departure from linearity, only ad hoc
alternatives to (1.2) have been proposed (see, e.g., the discussions in [25] and in section 5.3.3
of [9]).

We pursue here the approach initiated in [28], where the methods of statistical mechanics
were brought to bear on planar Voronoi tessellations. That work has opened the possibility of
an expansion in powers of n− 1

2 for all quantities of interest related to an n-sided Voronoi cell.
This initially led to the asymptotic large-n expansion of the probability pn for an arbitrarily
chosen cell to have n sides. An immediate further result was the proof that the RVF obeys
Lewis’ law (1.1) asymptotically for n → ∞ with coefficient a0 = 1

4 . But whereas Lewis’ law
refers to a single cell, Aboav’s deals with the intrinsically more difficult problem of cell–cell
correlations; it therefore requires the separate study that we present here.

Our key result, equation (2.2) of section 2.1, is an exact expression for the asymptotic
behaviour of mn as n becomes large. The inverse square root decay appearing in that
expression explains the small deviations from linearity that are observed. As a corollary
we obtain in section 2.2 the asymptotic expression for the total number, to be called K(2)

n ,
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Figure 2. Schematic picture of the environment of an n-sided Voronoi cell with n ≈ 100
around a seed at O. The first and second neighbour cells have their seeds at F1, F2, F3, . . . and
at S1, S2, S3, . . . , respectively. All solid line segments separate Voronoi cells. Among these, the
heavy solid line �0 is the perimeter of the n-sided cell, which is close to circular. The heavy
solid line �1 separates the first from the second neighbours. Both �0 and �1 are piecewise linear

on a scale n− 1
2 . On the scale of order 1 the incipient piecewise parabolic structure of �1 is

discernible.

of second-neighbour cells surrounding a central n-sided cell. In section 3 we discuss these
results. We compare them to the numerical RVF data, as well as to data on diffusion-limited
colloidal aggregation coming from both experiments and simulations. Whereas our asymptotic
expansion constitutes an exact result based on first principles, in section 4 we take a pragmatic
attitude and try to find the best two- and three-parameter fits for mn that incorporate this large-n
behaviour. In section 5 we speculate briefly on modifications that our theory may undergo
in the case of cellular systems not of the RVF type. In section 6 we conclude. Finally, in
the appendix we prove a theorem concerning the statistics of randomly distributed points in a
half-plane that is indispensable for the derivation of the main result.

2. Two-cell correlations

2.1. First-neighbour correlation

We will determine analytically the large-n behaviour of mn in an RVF. Two steps are required
to arrive at this result. The first step of the derivation is based on the geometrical properties
of the large n-sided cell; these have all been determined quantitatively in an earlier work [28],
where they required considerable mathematical effort. The arguments of the first step will
be presented with the aid of a figure, but we stress that they are nonetheless nontrivial and
dictated by compelling logic; they constitute the conceptually new part of this investigation.
The second step is a problem in statistics whose solution, although somewhat lengthy, can be
obtained by standard methods. We present it in the appendix.

We begin by considering an n-sided cell with n being very large. Cells with very many
sides are extremely rare, but if one occurs, then its environment must look as depicted in
figure 2, where the n-sided cell of a ‘central’ seed at O is surrounded by n strongly elongated
first neighbour cells containing seeds Fi . Independent evidence for such a geometry comes
from work by Lauritsen et al [29], who Monte Carlo simulated a Hamiltonian favouring the
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appearance of many-sided cells. In figure 2 four different length scales [28] play a role, each
proportional to its own characteristic power of n:

(i) The perimeter �0 of the central n-sided cell typically runs within an annulus of centre O,
of radius Rc = (n/4πλ)

1
2 , and of width of order 1. Hence, provided it remains smooth,

for n → ∞ the perimeter tends towards a circle of radius Rc. Similarly, the first neighbour
seeds Fi will be on a circle of radius 2Rc.

(ii) Sufficient smoothness of the perimeter �0 in the limit n → ∞ is guaranteed by the
following property: locally the radial coordinates of the individual vertices of �0 have
rms deviations of order n− 3

2 with respect to the locally averaged radial coordinate.
A similar statement holds for the curve, not drawn in figure 2, that links the successive
first neighbours.

(iii) The n vertices on the perimeter of the central cell have a line density ρvert = n/(2πRc) =
(nλ/π)

1
2 . Consequently, the first neighbour seeds Fi have a line density 1

2ρvert.
(iv) In the region to the right of the heavy solid line �1, which is occupied by second and

further neighbours, the seed density keeps its ‘background’ value λ, i.e. is of order n0.3

In this picture we base the following line of arguments. For n → ∞ the vertex line
density ρvert = (nλ/π)

1
2 tends to infinity. In spite of this the areal density λ of the seeds to the

right of �1 stays of order n0. It follows that the central cell will have ∼n
1
2 second neighbour

cells. Since there are n first neighbours, each second neighbour cell Sj must be adjacent to
∼n

1
2 first neighbour cells Fi (where we call the cells by the names of their seeds and where the

symbol ∼ denotes asymptotic proportionality). Figure 2 shows that under these geometrical
constraints each first neighbour Fi is most likely to have itself four neighbours, namely, the
central n-sided cell, a single second neighbour cell, and two other first neighbours, Fi−1

and Fi+1.
We now focus on the exceptional Fi that have five neighbours due to their being adjacent

to two second neighbours Sj and Sj+1. An example is the cell marked F1 in figure 2, which
is adjacent to both S1 and S2. Let us denote by f5 the fraction of first neighbours that are
five-sided. In view of the scaling relations that precede we expect that f5 = cn− 1

2 + · · · , where
c is a numerical coefficient and the dots indicate terms of higher order in n− 1

2 . Any six- and
higher-sided Fi will contribute only to these dot terms. Hence we have

mn = 4(1 − f5) + 5f5 = 4 + cn− 1
2 + · · · . (2.1)

It turns out to be possible to determine the constant c. To that end we consider the solid line
�1 in figure 2, which separates the central seed’s first neighbours from its second neighbours.
In the large-n limit the curve linking Fi becomes a circle which may locally be replaced with
a straight line. In figure 3 this straight line is represented by the x-axis and the region of space
containing the second and further neighbours by the half-plane y > 0. Seeds are uniformly
distributed in the upper half-plane with the background density λ. Since the first neighbours
Fi are dense on the x-axis, the curve �1 divides the half-plane y > 0 into a lower part of
points closer to the x-axis than to any of the seeds, and its complement. Hence the function
y = �1(x) is piecewise parabolic; its incipient parabolic segments are discernable in figure 2.
To each cusp of �1(x) corresponds a five-sided first neighbour cell. Let ρcusp be the density
on the x-axis of the abscissae of the cusps of �1(x). Then it is clear that f5 = 2ρcusp/ρvert.
The determination of ρcusp for a given seed density λ in the upper half-plane is a well-defined

3 Figure 2 is only schematic in that a faithful representation of all proportions would lead to an about twice higher
density of the second and further neighbours to the right of �1; as it is, the picture better brings out the emergence of
the piecewise parabolic segments of �1.
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Figure 3. The x-axis represents a continuum of first neighbours. The upper half-plane is randomly
filled with seeds of uniform density λ (here λ = 1). The region of the half-plane which is closer
to the x-axis than to any of the seeds is separated from its complement by the piecewise parabolic
curve y = �1(x). The abscissae of the cusps of �1 are shown in the appendix to have a density of
3
2 λ

1
2 on the x-axis. Full and open squares represent second and further neighbours, respectively.

Note that the horizontal and vertical scales are different.

problem in statistics. A somewhat lengthy calculation yields ρcusp = 3
2λ

1
2 (see the appendix),

in which the coefficient 3
2 is essential. Using the expression for ρvert found above we therefore

have that f5 = 2(π/nλ)
1
2 × 3λ

1
2 /2 = 3(π/n)

1
2 , whence c = 3π

1
2 . Substituting this into (2.1)

we conclude that for the random Voronoi froth mn is given by

mn = 4 + 3

√
π

n
+ · · · (n → ∞), (2.2)

where the dots stand for higher order terms in n− 1
2 . This exact asymptotic formula for the

first-neighbour correlation of Poisson–Voronoi cells is the key result of this work. It represents
a new paradigm for the behaviour of the cell–cell correlation. We defer all further comments
to section 3.

2.2. Second-neighbour correlation

It is easy to obtain a corollary involving the correlation between a central cell and its second
neighbour cells in the RVF. In a wider context concentric layers of cells around a central one
have been the subject of various investigations in recent years [30]. We denote by K(2)

n the
average number of second neighbours of an n-sided cell. The preceding result allows us to
determine almost immediately the expression for K(2)

n , again in the limit of asymptotically
large n. We appeal once more to figure 2. For n → ∞ the circle of seeds Fi has a circumference
4πRc = 2(nπ/λ)

1
2 . The total number Ncusp of cusps of �1 along this circle is equal to ρcusp

times the circumference, whence Ncusp = 3(πn)
1
2 . Some caution must be exercised at this

point. The number of second-neighbour cells can at most be equal to Ncusp; however, it will be
slightly smaller. The reason is that the common border between a given second neighbour and
the set of first neighbours may consist of more than a single parabolic segment. We therefore
have K(2)

n = ηNcusp where the reduction factor η < 1 is a geometrically defined mathematical
constant. The result is that

K(2)
n = 3η(πn)

1
2 + · · · (n → ∞). (2.3)
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Figure 4. Average sidedness mn of a neighbour of an n-sided cell plotted against n−1. Open
circles and closed dots: same data as in figure 1, but in this plot the curvature appears more clearly.
Dashed straight line: Aboav’s law mn = a + bn−1 with a and b as in figure 1. Solid line: first two

terms, mn = 4 + 3(π/n)
1
2 , of the exact asymptotic series (2.2). Error bars are shown for the dotted

data; where absent, they are smaller than the data points.

We have not seen a way to find a simple analytic expression for η; from a simulation in which
we generated more than 2000 cusps we obtained the estimate

η = 0.95 ± 0.01. (2.4)

Equation (2.3) together with (2.4) constitutes the exact asymptotic formula for the total number
of second neighbours of a central n-sided cell in a random Voronoi froth.

3. Discussion

We now discuss the significance of equation (2.2). This equation is first of all a statement
of principle: in the RVF (and hence in all theoretical models or experimental systems for
which it is relevant), as the accuracy and the range of the data increase, the two-cell
correlation mn should be seen to follow an n− 1

2 law and asymptotically approach m∞ = 4.4

Equation (2.2) therefore rules out the possibility of the existence of a general proof of Aboav’s
law for an unrestricted range of n. Aboav’s law keeps its meaning, however, as a good linear
approximation to the available data in the window accessible to simulations or experiments.

3.1. Comparison to RVF simulation data

Earnshaw and Robinson [12], following a remark for which they credit Weaire, have
emphasized that in order to detect small deviations from Aboav’s law it is essential to plot
the mn data as a function of n−1. We fully concur with them and have plotted in this way in
figure 4 the same data that are shown in figure 1. In the new variable n−1 Aboav’s law remains
linear and the negative curvature of the simulation data now appears clearly. In addition
we have represented by a solid line in figure 4 the first two terms, mn = 4 + 3(π/n)

1
2 , of

equation (2.2). We discuss separately two aspects of the theory, namely, its prediction of the
curvature effect and its numerical accuracy.

Curvature. We confront our calculation of the asymptotic behaviour of mn with the
RVF simulation data. It is visually apparent from figure 4 that the simulation data have a

4 This is in agreement with the inequality mn > 4 for all n, derived by Le Caër and Delannay [21].
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curvature very similar to that of the theoretical curve. Quantitatively, we obtain from (2.2)
analytically

− (nmn)
′′

nmn

= 3π
1
2

4n
5
2 [4 + 3(π/n)

1
2 ]

, (3.1)

which ranges from 0.006 to 0.001 in the interval 4 � n � 8 and hence is of the same
order of magnitude as the value 0.004 found from figure 1. We conclude that the asymptotic
result (2.2) not only explains why the mn data should be curved, but also correctly predicts
the sign and magnitude of the curvature.

Numerical accuracy. Equation (2.2) is the beginning of an asymptotic series in powers of
n− 1

2 . Although they may, such series are not guaranteed to produce accurate numerical values
when the expansion variable is finite. Figures 2 (which is for n ≈ 100) and 3 (for n = ∞),
used in our derivation, refer to seed configurations that are very far away indeed from those
observed in either simulations or experiments. Therefore, one might be uninclined a priori to
expect of this expansion a high degree of numerical accuracy. However, figure 4 shows the
contrary. When compared to the numerical RVF values, our asymptotic result (2.2), limited to
its first two terms, is quite good: it is only slightly more off than Aboav’s linear fit. This gives
confidence in the expansion not only as an asymptotic constraint on the mn curve, but also as
a practical tool for estimating this and other correlations. We will present further numerical
considerations in section 4.

3.2. Comparison to diffusion-limited colloidal aggregation (DLCA)

The RVF is an idealized model which appears in the discussion and analysis of various
naturally occurring cellular systems [22]. We now investigate the relevance of the RVF
cell–cell correlations calculated in section 2 for a real physical system, namely, diffusion-
limited colloidal aggregation (DLCA) in two-dimensional suspensions. In the experiments
one monitors the slow aggregation of particles trapped at the air/water interface and initially
randomly distributed. In the early stage of this process isolated clusters appear and video
images of the system taken after some time t are analysed in terms of the Voronoi cells
constructed around the centres of mass of these clusters. Simulation methods developed for
such aggregating systems are known [14] to agree well with the experimental studies and we
will discuss the simulations first.

Recently, detailed Brownian dynamics simulations have been performed by Fernández-
Toledano et al [31]. Their mn versus 1/n data have been represented in our figure 5. The
authors fit the mn data by Aboav’s linear law (upper thin straight line in figure 5), but their
data points depart from linearity for n > 9 in an even more pronounced way than those of
figure 4. Fernández-Toledano et al attribute these deviations to statistical uncertainties.
Instead, we believe that their simulations were accurate enough for them to actually see
the curvature predicted by our asymptotic RVF theory, represented in figure 5 by the solid
curve. It predicts a curvature of the same order of magnitude as observed in the data. While
both Aboav’s law and our curve are compatible with the error bars, our theory provides an
explanation whereas the linear fit does not. The authors of [31] fit their K(2)

n data, shown in
figure 6, with a linear curve based on Aboav’s law plus some additional hypotheses. The data
show, however, a slight but clearly distinguishable curvature of the same sign and magnitude
as predicted by our law (2.3); hence we believe they have seen this law.

The simulations were prompted by experimental DLCA studies carried out in the nineties
by Earnshaw and Robinson, who among several other questions also tested [12, 13] the validity
of Aboav’s law. Earnshaw and Robinson fitted their experimental mn versus 1/n data by a
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Figure 5. Average sidedness mn of a neighbour of an n-sided cell. Full squares: DLCA simulation
data by Fernández-Toledano et al ( [31], inset of figure 5; the error bars were kindly provided to
us by the authors). Open circles: experimental DLCA data by Earnshaw and Robinson (data for
t = 60 min from [12], figure 5). Thin straight lines: Aboav’s linear law; the upper one is the fit
to the simulation data and the lower one is the fit to the experimental data proposed in [31] and
in [12, 13], respectively. Solid curve: first two terms of our theoretical large-n expansion for the
random Voronoi froth, equation (2.2).

2 6 8 10
n

10

15

K
n(2

)

4

Figure 6. Average number K
(2)
n of second neighbours of an n-sided cell. Full squares: DLCA

simulation data by Fernández-Toledano et al (from [31], figure 7; the error bars were kindly
provided to us by the authors). Thin straight line: the linear fit to the data proposed in [31]. Solid
curve: first term of our theoretical large-n expansion for the random Voronoi froth, equation (2.3)
with η = 0.95.

straight line and concluded [12] that DLCA accords well with the Aboav–Weaire law. We
show one of their data sets in our figure 5. It exhibits the downward curvature that we expect.
Our comment is again that whereas within the error bars a linear fit is also compatible with
the data, only the curved theoretical law (2.2) provides an explanation. The experimental
data seem only a small step away from being able to decisively rule out either one or the
other. In view of the agreement observed by the authors between experimental and simulation
data in many other respects [14], we are confident that DLCA experiments pushed to greater
resolution will make the curvature visible.

We finally ask what is the physical reason that the RVF theory is applicable to DLCA.
We believe the answer is as follows. One may obtain the Voronoi construction for randomly
distributed seeds by starting a circular domain growth simultaneously from each seed and
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having it stop at the contact points of the circular frontiers. It is likely that in the experiments
the depletion zones arising around each cluster play exactly the role of these growing circles.

3.3. Comparison to other exact models

There are very few exact results for the two-cell correlation mn in other geometrical systems.
Those that we are aware of all concern model systems artificially constructed to be exactly
solvable. An example is the anisotropic ‘laminated Poisson network’ studied by Fortes [32],
for which Aboav’s law appears to be satisfied exactly (for n � 4) with a = 4

3 and b = 14.
Several results do exist, however, for topological planar cell models, i.e. models in which only
the vertex connectivity is considered but where metric properties such as distances and areas
are ignored. To this class belongs very interesting work by Le Caër [33] and Le Caër and
Delannay [21]. These authors start from regular planar z-coordinated lattices with z > 3 and
by a suitable algorithm construct from it a random topological froth that is three-coordinated
just like the RVF and the vast majority of other cellular systems. For one of the simplest
models of this kind (the case z = 4) Le Caër [33] finds

mn = 9

2
+

10

n
(n = 4, 5, . . . , 8), (3.2)

which is Aboav’s law on a restricted n interval. Other topological models studied by these
authors may be treated numerically exactly and, in the general case, show deviations from
Aboav’s law.5

Also in the class of topological models is the work by Godrèche et al [35], who studied
an ensemble of diagrams encountered in field theory. For these they found

mn = 7 +
3

n
+

9

n(n + 1)
, (3.3)

which while curving upwards approaches asymptotically the linear law nmn � 7n.
It may well prove useful to classify models of cellular structure according to the decay

of their mn by writing generically mn − m∞ ∼ n−α , where α is a positive exponent.
Equations (2.2) and (3.3) then provide examples with α = 1

2 and α = 1, respectively.
Beyond the RVF studied above it is unknown at present which other theoretical models and
experimental systems have α = 1

2 , but for DLCA this certainly seems the likely value. We do
not know if it is conceivable that a microscopic geometrical model of cellular structure, as
opposed to the topological ones, could have α = 1. If so, its nmn would obey Aboav’s linear
law, either exactly for all n or asymptotically for large n. Obviously, knowing a system’s α

value is relevant for the analysis of its data. This value is very likely tied up with the cell
formation mechanism, but in an as yet completely unknown way.

4. Beyond exact asymptotics: curve fitting

Equation (2.2) is an exact expansion in powers of n− 1
2 that we may write as

mn = 4 +
3π

1
2

n
1
2

+
a2

n
+

a3

n
3
2

+ · · · . (4.1)

The higher order coefficients a2, a3, . . . , are well defined and it is possible, in principle, to
determine them successively. It would certainly be interesting to know a few more of them,
but the corresponding calculations are far from straightforward. Moreover, it should be kept

5 In [21] a proposal is made to come to a unique definition (called aw there) of the parameter a, valid also when nmn

is not linear. The connection of this parameter to the second moment of the n distribution was studied in [34].
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in mind that the asymptotic series (4.1) is in all likelihood only asymptotic, which means (see
e.g. [36], chapter 1) that even though the first few terms may give a good approximation, when
adding more and more terms for fixed n one eventually finds that the series does not converge.
All we know is that as n grows, (4.1) approaches the exact result ever more closely.

The remainder of this section is in a spirit different from the rest of our work. We include
it because of the interest in numerical fits that exists in part of the cellular system community
(see, e.g., [9]). In the same pragmatic way that led to Aboav’s law we now ask if it is possible
to fit the numerical mn data by a simple analytic expression that incorporates the first two
terms of the asymptotic constraint (2.2). The natural answer is to extend the two explicitly
known terms of (2.2) by one or more extra terms with coefficients chosen to fit the data, and
to truncate after that. With two extra terms one gets

mn = 4 + 3π
1
2 n− 1

2 + An−1 + Bn− 3
2 , (4.2)

where A and B are on the same footing as Aboav’s parameters a and b. With three extra terms
one has

mn = 4 + 3π
1
2 n− 1

2 + An−1 + Bn− 3
2 + Cn−2. (4.3)

Here A,B,C, . . . , are not related in any simple way to a1, a2, a3, . . . , of equation (4.1).
A relation between the fit parameters arises if one imposes that the fit obeys Weaire’s sum
rule [17]

〈nmn〉 = 〈n2〉, (4.4)

in which 〈Xn〉 ≡ ∑∞
n=3 Xnpn for any function Xn of the sidedness n, and pn is the probability

that an arbitrarily chosen cell has n sides. Thus, combining (4.4) with Aboav’s law (1.2) leads
to the well-known relation b = µ2 + 6a where µ2 ≡ 〈n2〉 − 〈n〉2 and one uses that 〈n〉 = 6.
Imposing Weaire’s sum rule makes good sense and we will therefore do the same. After
substituting the assumed expressions (4.2) and (4.3) into (4.4) we find

A + B
〈
n− 1

2
〉 = 12 + µ2 − 3π

1
2
〈
n

1
2
〉
, (4.5)

and

A + B
〈
n− 1

2
〉
+ C〈n−1〉 = 12 + µ2 − 3π

1
2
〈
n

1
2
〉
, (4.6)

respectively. The numerically most accurate data for pn and mn available today are those due to
Brakke [27]. They lead to µ2 = 1.7807,

〈
n

1
2
〉 = 2.4344,

〈
n− 1

2
〉 = 0.4160 and 〈n−1〉 = 0.1753,

which are all needed in (4.5) and (4.6).
We fitted both expressions (4.2) and (4.3) by minimizing the weighted maximum deviation

from the data, i.e., letting mB
n denote Brakke’s numerical values and σ B

n their standard deviation,
by searching for

ε = min max
3�n�15

∣∣mn − mB
n

∣∣/σ B
n , (4.7)

where the minimum is taken over the fit parameters under either constraint (4.5) or (4.6). The
results are shown in table 1. As witnessed by the value of ε, the two-parameter fit still runs
far outside of the standard deviations given by Brakke. The three-parameter fit yields strongly
improved results. Comparison of the two- and three-parameter fit shows, in particular, that as
more terms are added, there is no sign that the values of A,B, . . . , converge. This also is a
strong indication of the merely asymptotic character of the n− 1

2 expansion.
We emphasize that whereas sections 2 and 3 of our work rest on first principles, the

procedure followed in the present section does not. It is hybrid in that it represents the
construction of a best fit which has been made to include the first two terms of the exact
large-n expansion. There is of course no reason to believe that mn can be represented as a sum
of a finite number of powers of n, whether it be (4.2), (4.3) or Aboav’s law (1.2).
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Table 1. Two-parameter fit (4.2) and three-parameter fit (4.3) to Brakke’s simulation data [27].
The latter are denoted here as mB

n and their statistical error as σB
n . Both fits have been made to

satisfy Weaire’s sum rule (4.4).

Three-parameter fit
Two-parameter fit A = 6.279

A = 3.816 B = −18.327
B = −7.163 C = 12.440 Simulation data
ε = 50.46 ε = 7.013 (Brakke [27])

n mn mn − mB
n mn mn − mB

n mB
n ± σB

n

3 6.9635 −0.0481 7.0183 0.0067 7.0116 ± 0.0095
4 6.7173 0.0002 6.7152 −0.0019 6.7171 ± 0.0028
5 6.5005 0.0083 6.4923 0.0001 6.4922 ± 0.0017
6 6.319 43 0.004 42 6.315 93 0.000 92 6.315 01 ± 0.000 14
7 6.168 16 −0.002 56 6.171 14 0.000 42 6.170 72 ± 0.000 16
8 6.040 42 −0.009 74 6.049 32 −0.000 84 6.050 16 ± 0.000 21
9 5.931 16 −0.016 22 5.944 97 −0.002 42 5.947 39 ± 0.000 35

10 5.836 59 −0.022 00 5.854 29 −0.004 31 5.858 60 ± 0.000 64
11 5.7538 −0.0254 5.7746 −0.0047 5.7793 ± 0.0014
12 5.6807 −0.0297 5.7038 −0.0066 5.7104 ± 0.0082
13 5.6155 −0.0364 5.6404 −0.0115 5.6519 ± 0.0082
14 5.557 −0.0261 5.583 0.000 5.583 ± 0.023
15 5.504 −0.0310 5.531 −0.004 5.535 ± 0.070

5. Theory for non-RVF systems

The RVF serves as a model of reference for general cellular systems much in the same
way as an ideal gas does for interacting gases: some of the RVF results will apply to other
systems and some will not. There are many factors that may potentially cause an experimental
system to depart from RVF-like behaviour. For example, (i) in some cellular structures the
‘seeds’ represent actual particles or larger physical entities whose mutual interactions cannot
be neglected; (ii) a general planar cell structure cannot be derived from a set of point centres
by means of the Voronoi construction and (iii) some systems, like soap froths, are not in
equilibrium but rather in a coarsening state and need a dynamical theory in terms of cell
transformation processes. We refer to Rivier [22] for an overview.

We now ask the subtler question as to whether the cell–cell correlation mn in any of these
non-RVF systems also deviates from Aboav’s law by some slight curvature, and if it does,
what the asymptotic behaviour of its mn is. For certain microscopic models one may hope
to be able to find the answer to this question perturbatively starting from the analysis of the
present work.

To show how such an approach might proceed we become more speculative. We discuss
briefly and heuristically an example from class (ii) above, namely, the Voronoi tessellation
associated with a gas of hard core particles of finite diameter d. For this system the
preceding analysis of the large-n limit remains valid as long as n � n∗, where the crossover
value n∗ is determined by the condition that the distance between adjacent first neighbours
becomes comparable to the particle diameter. This gives 2πRc/n∗ ∼ d whence, because
of Rc = (n/4πλ)

1
2 , it follows that n∗ ∼ 1/(λd2), with the ∼ sign indicating asymptotic

proportionality. For n � n∗ the repulsion between the particles combined with the condition
that they be locally aligned along a circle imposes that the radius of the central cell grows
as Rc ∼ nd and hence that f5 must saturate at a value f5 = c0λ

1
2 d where c0 is an unknown
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numerical coefficient. The correlation mn can depend only on the two dimensionless variables
n and λd2. It is reasonable to assume that in the scaling limit n → ∞, λd2 → 0 with nλd2 = x

fixed, mn may be expressed as

mn � 4 + λ
1
2 dM(nλd2), (5.1)

in which the scaling function M must satisfy

M(∞) = c0, M(x) � 3π
1
2

x
1
2

for x → 0. (5.2)

Hence for hard core particles the limiting value m∞ of (2.2) is changed and (5.2) does not tell
us how this new limit is approached for large n. However, the n− 1

2 decay law and the curvature
effect that it entails survive in the crossover regime n � λd2, and this is the regime that is
encountered first when the experimental or simulational precision increases. Future work will
have to deal with this and other instances of deviations from RVF statistics.

6. Conclusion

Aboav’s linear law (1.2) for the two-cell correlations mn has been known to fail for the
random Voronoi froth. The exact calculation of this work has explained both qualitatively and
quantitatively why it must fail: the exact asymptotic formula for mn exhibits an inverse square
root decay with n. This large-n behaviour represents a new paradigm in the field of planar
cellular systems.

In our discussion we have raised the question of whether similar violations occur also
in other planar cellular systems, be they theoretical models or experimental realizations. We
found that departures from Aboav’s law are convincingly present in computer simulations of
diffusion-limited colloidal aggregation (DLCA) performed recently by Fernández-Toledano
et al [31]. Since DLCA simulations have been found to be in all respects close to the
corresponding experiments [14], it is very likely that DLCA experiments violate Aboav’s
linear law in the same way. Experiments by Earnshaw and Robinson [12, 13], in spite of
error bars that do not unambiguously rule out Aboav’s law, provide evidence for the curvature
effect. One must expect that future experimental data (or perhaps even reanalysis of existing
data), provided they are of high enough precision and/or cover a large enough range in n,
will reveal the presence of curvature in the mn versus 1/n relation also for certain cellular
structures other than DLCA.

The parameters a and b of Aboav’s law are useful in that they provide a rough global
classification of the behaviour of a planar cellular system in the experimentally accessible
range of measurement. No first-principle analysis of any geometrical cell model has, however,
produced an interpretation and theoretical expressions for these parameters. Empirically,
moreover, the precise values of a and b depend on the range of the fit and on how it is performed
[33] (see footnote 5). Therefore in future high-resolution simulations or experiments a fixation
on Aboav’s law would be misguided and any curvature effect, whenever there is evidence for
it, will be worthy of study.
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Appendix

Equation (2.2) is the central result of this paper. Determining the coefficient of the second
term in this equation involves a problem in statistics that we solve in this appendix. We have
to prove the following theorem, illustrated by figure 3.

Theorem 1. Let point particles (‘seeds’) be randomly distributed with uniform density λ in
the upper half-plane y > 0. Let �1(x) be the piecewise parabolic curve that separates the
upper half-plane into a region of points closer to the x-axis than to any of the seeds, and its
complement. Consider the set of abscissae of the points where the parabolic segments join
and where therefore �1(x) has cusps. Then the density ρ of the abscissae on the x-axis is
equal to ρ = 3

2λ
1
2 .

Proof. The nontrivial part of this theorem is the coefficient 3
2 , since the seed density λ may be

scaled away; below we keep λ only to have at all times a check on the dimensionality of the
quantities involved in the calculation.

Let Pi = (xi, yi) be the position of the ith seed. The parabola

fi(x) = yi

2

(
1 +

(x − xi)
2

y2
i

)
(A.1)

separates the upper half-plane into a region containing all points closer to the x-axis than to
Pi , and its complement. Each parabolic segment of �1(x) lies on one of fi(x).

For the considerations that follow we must, as is always implied in statistical mechanics,
take a finite system and let eventually its size tend to infinity. We will start with a rectangular
box [−L,L] × [0, L] whose volume we denote by V = 2L2.6 Let the seeds inside this box
be those of indices i = 1, 2, . . . , N , where N is such that N/V = λ.

We choose a small 	x and define ρ	x as the probability that there is a cusp with abscissa
in the interval [0,	x]. This is the probability that there exist two parabolas, say y = fj (x)

and y = fk(x), that have a point of intersection Pjk = (xjk, yjk) with xjk ∈ [0,	x] and such
that Pjk is below all the parabolas y = f
(x) with 
 �= j, k. This may be expressed as

ρ	x =
∫ L

−L

∏
1�i�N

dxi

2L

∫ L

0

∏
1�i�N

dyi

L

∑
1�j<k�N

χjk(	x)
∏

1�
�N

 �=j,k

θ
(yjk), (A.2)

where

χjk(	x) =
{

1 if 0 � xjk � 	x

0 otherwise
(A.3)

and

θ
(yjk) =
{

1 if f
(xjk) > yjk

0 otherwise.
(A.4)

The sum in the integrand in (A.2) is on 1
2N(N − 1) terms that all give identical results so that

we may choose j, k = 1, 2. The N − 2 integrals on (x3, y3), . . . , (xN , yN) may be carried
out independently; we have θ
(y12) = 1 unless (x
, y
) is in the disc of radius y12 centred at
(x12, y12). Hence∫ L

−L

dx


∫ L

0
dy
 θ
(y12) = V − πy2

12. (A.5)

6 More generally one might take a box [−L,L] × [0,ML] where it suffices that limL→∞ ML = ∞.
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Using this we may rewrite (A.2) as

ρ	x = N(N − 1)

2V N

∫ L

−L

dx1

∫ L

−L

dx2

∫ L

0
dy1

∫ L

0
dy2 χ12(	x)

[
V − πy2

12

]N−2
. (A.6)

In the limit N,V,L → ∞ with N/V = N/(2L2) = λ fixed this becomes

ρ	x = 1

2
λ2

∫ ∞

−∞
dx1

∫ ∞

0
dy1

∫ ∞

−∞
dx2

∫ ∞

0
dy2 χ12(	x) exp

(−λπy2
12

)
. (A.7)

The exponential factor in the integrand of (A.7) has the interpretation of the probability that
the disc of radius y12 around the point of intersection P12 contains no seeds. For i = 1, 2 we
now transform from the pair of variables (xi, yi) to the new pair (ri, si) defined by

ri ≡ fi(0) = yi

2

(
1 +

x2
i

y2
i

)
, si ≡ f ′

i (0) = −xi

yi

, (i = 1, 2). (A.8)

The transformation has the Jacobian

∂(ri, si)

∂(xi, yi)
=

(
1 + s2

i

)2

4ri

, (i = 1, 2). (A.9)

In terms of these new variables of integration (A.7) becomes

ρ	x = 8λ2
∫ ∞

0
ds1

∫ ∞

−∞
dr1

∫ ∞

0
ds2

×
∫ ∞

−∞
dr2

r1r2(
1 + s2

1

)2(
1 + s2

2

)2 χ12(	x) exp
(−λπy2

12

)
. (A.10)

In the interval 0 � x � 	x the two parabolas fi(x) may be represented by the expansion

fi(x) = ri + six + O(	x2), (i = 1, 2). (A.11)

The abscissa x12 of their intersection point inside this interval, if there is one, is the solution
of f1(x12) = f2(x12). Using (A.11) we find

x12 = r2 − r1

s2 − s1
+ O(	x2). (A.12)

The condition 0 � x12 � 	x imposed by χ12 in (A.10) can be rewritten as

r1 � r2 � y1 + (s1 − s2)	x, (s1 > s2). (A.13)

Because of symmetry we may restrict the s2 integration in (A.10) to s2 < s1 if we compensate by
an extra factor 2. Doing so, interchanging then the r2 and s2 integrals, using condition (A.13),
and still observing that y12 = r2 + O(	x) we obtain from (A.10)

ρ	x = 16λ2
∫ ∞

0
dr1

∫ ∞

−∞
ds1

∫ s1

−∞
ds2

×
∫ r1+(s1−s2)	x

r1

dr2
r1r2(

1 + s2
1

)2(
1 + s2

2

)2 exp
(−λπr2

1

)
, (A.14)

valid up to corrections of order 	x2. Dividing by 	x and performing the r2 integral in the
limit of 	x → 0 we find

ρ = 16λ2Ir(I1 − I2), (A.15)

where

Ir = 1

2

∫ ∞

−∞
dr1 r2

1 exp
(−λπr2

1

) = (
4πλ

3
2
)−1

(A.16)
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and

Ii =
∫ ∞

−∞
ds1

∫ s1

−∞
ds2

si(
1 + s2

1

)2(
1 + s2

2

)2 , (i = 1, 2). (A.17)

In the expression for I1 we interchange the s1 and s2 integrals, whereas in the one for I2 we
interchange the names s1 and s2. The result is that

I1 − I2 =
∫ ∞

−∞

ds2(
1 + s2

2

)2

( ∫ ∞

s2

−
∫ s2

−∞

)
s1 ds1(

1 + s2
1

)2

=
∫ ∞

−∞

ds2(
1 + s2

2

)2

[
− 1

2
(
1 + s2

1

)(∣∣∣∞
s2

−
∣∣∣s2

−∞

)]

=
∫ ∞

−∞

ds2(
1 + s2

2

)3

= 3π

8
. (A.18)

Upon combining (A.15), (A.16) and (A.18) we find

ρ = 16λ2 × (
4πλ

3
2
)−1 × (3π/8) = 3

2λ
1
2 , (A.19)

which is what we had to prove. �
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